Decision Mathematics 1 Mark Scheme

Question	Scheme	Marks	AOs
1(a)	B 2 13 7 E 3 20 13 12 4 20 A 1 0 27 C 4 24 23 59 55 (0) 27 25 24 23 10 D 5 34 37 34 11 47 45	M1 A1 A1	1.1b 1.1b 1.1b
	Path: ABECDGF	A1	1.1b
	Length: 55 (metres)	A1ft	1.1b
		(5)	
(b)	AB + DG = 13 + 11 = 24 ←	M1	1.1b
	A(BEC)D + B(ECD)G = 34 + 32 = 66	A1	1.1b
	A(BECD)G + B(EC)D = 45 + 21 = 66	A1	1.1b
	Repeat arcs: AB, DG	A1ft	2.2a
		(4)	
(c)	Length = $189 + 24 = 213$ (metres)	B1ft	1.1b
		(1)	
(d)	189 + x + 34 = 213 + 2x	M1	3.1b
	x = 10 so BG is 10 m	A1	1.1b
		(2)	
(12 mark			narks)

Notes:

(a)

M1: For a larger number replaced by a smaller one in the working values boxes at C, D, F or G

A1: For all values correct (and in correct order) at A, B, C and D

A1: For all values correct (and in correct order) at E, F & G

A1: For the correct path

A1ft: For 55 or ft their final value at F

(b)

M1: For 3 correct pairings of the four odd nodes (A,B, D & G)

A1: At least two pairings and totals correct

A2: All three pairings and totals correct

A3ft: Selecting their shortest pairing, and stating that these arcs should be repeated

Question 1 notes continued:

(c)

B1ft: For 213 or 189 + their shortest repeat

M1: For translating the information in the question in to an equation involving x, 2x and 34

A1: For a correct equation leading to BG = 10 (m)

Question	Scheme	Marks	AOs
2	Objective line drawn or at least two vertices tested	M1	3.1a
	For solving $y = 4x$ and $8x + 7y = 560$ to find the exact co-ordinate of the optimal point, must reach either $x = $ or $y = $	M1	1.1a
	$x = 15\frac{5}{9}$ and $y = 62\frac{2}{9}$	A1	1.1b
	Finding at least two points with integer co-ordinates from $(15 \pm 1, 63 \pm 2)$	M1	1.1b
	Testing at least two points with integer co-ordinates	M1	1.1b
	x = 15 and y = 63	A1	2.2a
	So the teacher should buy 15 pens and 63 pencils	A1ft	3.2a
			narks)

Notes:

M1: Selecting an appropriate mathematical process to solve the problem – either drawing an objective line with the correct gradient (or reciprocal gradient), or testing at least two vertices in C

M1: Solving simultaneous equations

A1: cao

M1: Recognition that outcome from this model is non-integer and integer solutions are required – testing two points with integer co-ordinates in at least one of $y \ge 4x$ and $8x + 7y \ge 560$

M1: Testing at least two integer solutions in $y \ge 4x$ or $8x + 7y \ge 560$ and C

A1: cao – deducing from tests which integer solution is both valid and optimal

A1ft: Interpreting solution in the context of the question – gives their integer values for x and y in the context of pens and pencils

Question	Scheme	Marks	AOs
3(a)(b)	The number(s) at the end of activity E indicate this project can be completed in 21 days	M1 A1 (3) M1 A1 A1	1.1b 1.1b 1.1b 2.1 1.1b
	Critical activities: B, G, I	A1	1.1b
		(4)	

(7 marks)

Notes:

M1: At least 5 activities and one dummy, one start

A1: A,B,C,D,F,G and first dummy correct

A1: E,H,I correct, second dummy correct and one finish

M1: All boxes completed, number generally increasing L to R (condone one "rogue")

A1: All values cao

A1: Deduction that result in diagram indicates that project can be completed in 21 days (all boxes completed, numbers generally increasing in the direction of the arrows for the top boxes and generally decreasing in the opposite direction of the arrow for the bottom boxes)

A1: Critical activities correct

e.g. number of arcs = ${2} = 8.5 \notin \mathbb{Z}$ (b)(i) $(2^{2x} - 1) + (2^x) + (x + 1) + (2^{x+1} - 3) + (11 - x) = 2(18)$ M1 $2^{2x} + 3(2^x) - 28 = 0 \Rightarrow x =$ M1 $(2^x + 7)(2^x - 4) = 0 \Rightarrow x = 2$ A1 (b)(ii) The order of the nodes are 9, 15, 3, 4, 5 M1 Therefore the graph is neither Eulerian nor semi-Eulerian as there are more than two odd nodes A1 (c) (a)		Scheme	Marks	AOs
(b)(i) $ (2^{2x}-1)+(2^x)+(x+1)+(2^{x+1}-3)+(11-x)=2(18) $ M1 $ 2^{2x}+3(2^x)-28=0\Rightarrow x= $ M1 $ (2^x+7)(2^x-4)=0\Rightarrow x=2 $ A1 $ (b)(ii) $ The order of the nodes are 9, 15, 3, 4, 5			B1	2.4
$2^{2x} + 3(2^{x}) - 28 = 0 \Rightarrow x = \dots$ $(2^{x} + 7)(2^{x} - 4) = 0 \Rightarrow x = 2$ (3) $(b)(ii)$ The order of the nodes are 9, 15, 3, 4, 5 $\frac{A1}{A1}$ Therefore the graph is neither Eulerian nor semi-Eulerian as there are more than two odd nodes (3) (c) (c) (d) (d) (d) (d) (e) (e) (e) (f)			(1)	
$(2^{x} + 7)(2^{x} - 4) = 0 \Rightarrow x = 2$ $(b)(ii)$ The order of the nodes are 9, 15, 3, 4, 5 (c) Therefore the graph is neither Eulerian nor semi-Eulerian as there are more than two odd nodes (c) (c) (d) (d) (d) (e) (e) (e) (f)		$(2^{2x}-1)+(2^x)+(x+1)+(2^{x+1}-3)+(11-x)=2(18)$	M1	1.1b
(b)(ii) The order of the nodes are 9, 15, 3, 4, 5 Therefore the graph is neither Eulerian nor semi-Eulerian as there are more than two odd nodes (c) (1) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		$2^{2x} + 3(2^x) - 28 = 0 \Rightarrow x = \dots$	M1	1.1b
(b)(ii) The order of the nodes are 9, 15, 3, 4, 5 Therefore the graph is neither Eulerian nor semi-Eulerian as there are more than two odd nodes (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d		$(2^x + 7)(2^x - 4) = 0 \Rightarrow x = 2$	A1	1.1b
Therefore the graph is neither Eulerian nor semi-Eulerian as there are more than two odd nodes (c) M1 M1			(3)	
are more than two odd nodes (c) (d) (e) M1		The order of the nodes are 9, 15, 3, 4, 5	M1	2.1
(c) M1	Therefore the graph is neither Eulerian nor semi-Eulerian as there	A1	2.4	
(c) M1		are more than two odd nodes	A1	2.2a
M1			(3)	
			M1 A1	2.5 2.2a
(2)			(2)	

(9 marks)

Notes:

(a)

B1: Explanation referring to need for an even number of odd nodes oe

(b)

M1: Forming an equation involving the orders of the 5 odd nodes and 2(18)

M1: Simplifies to a quadratic in 2^x and attempts to solve

A1: 2 cao

M1: Construct an argument involving the order of the 5 nodes

A1: Explanation considering the number of odd nodes

A1: Deduction that therefore it is neither Eulerian nor semi-Eulerian

(c)

M1: Interprets mathematical language to construct a disconnected graph

A1: Deduce a correct graph

Question	Scheme	Marks	AOs
5	Minimise (C =) 25x + 35y	B1	3.3
	Subject to: $(500x+800y \ge 150\ 000 \Rightarrow) \ 5x+8y \ge 1500$	B1	3.3
	$\frac{7}{20}(x+y) \leqslant x \leqslant \frac{13}{20}(x+y)$	M1	3.3
	Which simplifies to $7y \le 13x$ and $13y \ge 7x$	M1 A1	3.3 1.1b
	$x, y \geqslant 0$	AI	1.10

(5 marks)

Notes:

B1: A correct objective function + minimise

B1: Translate information in to a correct inequality

M1: For translating the information given into the LHS inequalityM1: For translating the information given in to the RHS inequality

A1: Simplifying to the correct inequalities